Superconvergence using pointwise interpolation in convection–diffusion problems

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pointwise Gopengauz Estimates for Interpolation

We derive some new pointwise estimates for the error in simultaneous approximation of a function f 2 C q ?1; 1] and its derivatives by a polynomial of interpolation and its respective derivatives. Our estimates incorporate the point-wise modulus of continuity and/or pointwise second modulus of continuity, an improvement in precision over estimates heretofore known. Our new methods of constructi...

متن کامل

Superconvergence of Jacobi-Gauss-Type Spectral Interpolation

In this paper, we extend the study of superconvergence properties of ChebyshevGauss-type spectral interpolation in [24, SINUM,Vol. 50, 2012] to general Jacobi-Gauss-type interpolation. We follow the same principle as in [24] to identify superconvergence points from interpolating analytic functions, but rigorous error analysis turns out much more involved even for the Legendre case. We address t...

متن کامل

Lagrange Interpolation and Finite Element Superconvergence

Abstract. We consider the finite element approximation of the Laplacian operator with the homogeneous Dirichlet boundary condition, and study the corresponding Lagrange interpolation in the context of finite element superconvergence. For ddimensional Qk-type elements with d ≥ 1 and k ≥ 1, we prove that the interpolation points must be the Lobatto points if the Lagrange interpolation and the fin...

متن کامل

Pointwise Estimates Formultivariate Interpolation Using Conditionally Positive Definite Functions

We seek pointwise error estimates for interpolants, on scattered data, constructed using a basis of conditionally positive deenite functions of order m, and polynomials of degree not exceeding m-1. Two diierent approaches to the analysis of such interpolation are considered. The former uses distributions and reproducing kernel ideas, whilst the latter is based on a Lagrange function approach. E...

متن کامل

Superconvergence Points for the Spectral Interpolation of Riesz Fractional Derivatives∗

In this paper, superconvergence points are located for the approximation of the Riesz derivative of order α using classical Lobatto-type polynomials when α ∈ (0, 1) and generalized Jacobi functions (GJF) for arbitrary α > 0, respectively. For the former, superconvergence points are zeros of the Riesz fractional derivative of the leading term in the truncated Legendre-Lobatto expansion. It is ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Numerical Mathematics

سال: 2014

ISSN: 0168-9274

DOI: 10.1016/j.apnum.2013.07.007